If it's not what You are looking for type in the equation solver your own equation and let us solve it.
64=6x^2
We move all terms to the left:
64-(6x^2)=0
a = -6; b = 0; c = +64;
Δ = b2-4ac
Δ = 02-4·(-6)·64
Δ = 1536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1536}=\sqrt{256*6}=\sqrt{256}*\sqrt{6}=16\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{6}}{2*-6}=\frac{0-16\sqrt{6}}{-12} =-\frac{16\sqrt{6}}{-12} =-\frac{4\sqrt{6}}{-3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{6}}{2*-6}=\frac{0+16\sqrt{6}}{-12} =\frac{16\sqrt{6}}{-12} =\frac{4\sqrt{6}}{-3} $
| 7m+9=117 | | (2/3)x+4=(4/5)x-2 | | (1+x)/(1+x^2)=3/5 | | n+6÷3=10 | | 5(x+1)(x-7)=0 | | f(-3)=6/2(-3)-3 | | 18-3(9-2t)=3(t-10 | | 3(m+1)=-3 | | 2x+8-3x=5 | | 2(8s+3)-4s=34 | | 10x−8.3−4x=6x | | (5x)=(4x+10) | | 12x+4=8x+8 | | (5x)=(4x=10) | | 4(×-4)=4x-16 | | 24w+8=0 | | 120+12x=300 | | 6n+90=360 | | 5x=27+6x | | 3y-12+65=180 | | x^2-4x=672 | | 2/3+4t=6t-8/15 | | 7+2m=1-m | | (4x)=(63-3x) | | 3/10s-2/10s=-33 | | x^2-7x=980 | | 1/5(10x-25)+2x=-30 | | -8.6y+8.2=2.1 | | 2/3+8t=10t-4/21 | | 6(x+3)-(3x+18)=-9 | | 1+2m-6=-5+2m | | 7(x-3)=5(3x) |